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Transient waves generated by a source on a circle 

Victor V Borisov and kina I Simonenko 
Institute of physics, St Perersburg University, Ulyanovskaya 1. Pemodvorets, St Petenburg, 
198904. Russia* 

Received 5 May 1994 

Abstract. The sol-<ions of the inhomogeneous wave equation are obtained. The some is 
distributed on a circle at rest 01 moving with a constant velocity. The wavefunction is found 
85 a series of transient modes by means of incomplete separation of variables, the Riemann 
formula, and the integrals containing three Bessel functions. 

1. Introduction 

In this paper we present the explicit solutions of the inhomogeneous wave equation in the 
spacetime domain. The general time-dependent source is distributed on a circle which is at 
rest or starts at a fixed moment of time and moves with a constant velocity. Realizations of 
such sources can vary from their continuous distribution on a circle at rest up to the source 
pulse moving along a helicoidal line. 

The wavefunctions are expressed in terms of transient modes in cylindrical coordinates. 
The analogous expansions had previously been constructed in spherical coordinates, where 
the wavefunctions were represented in terms of spherical harmonics. Clapp er ul (1970) 
constructed these expansions with the help of the retarded solution of the inhomogeneous 
equation using previously established addition theorems (Clapp 1970) and integral theorems 
(Clapp and Li 1970) for the spherical harmonics. Manankova (1972) obtained the explicit 
spacetime expansion in spherical coordinates by means of the incomplete separation of 
variables (Smimov 1937) and the Riemann method. Here we use the above methods and 
special relation for integrals containing three Bessel functions (Macdonald 1909). 

Evidently, the spacetime shucture of the source defines ‘an application for possible 
representations of the wave solutions. 

2. Solution of the wave equation 

The wave equation in cylindric coordinates p,  cp, z is 

The initial condition is 

@ = O  7 < 0 .  
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Here an arbitrary function j describes the source of the wave disturbance, j = 0 for r .c 0, 
r = cf, t is time and c is the wavefront velocity (the velocity of light for electromagnetic 
waves). 

We consmct the solution of the problem by separating variables rp and p. Representing 
the desired wavefunction and the source in the form 
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a? CO 

* ( P , v , z , T )  = e"'"tlr,(P,T,z) I ( P , v , z , ~ ) =  e i m ' j m ( p , c z )  (3) 
m=-w m=-m 

we have from (1) and (2 )  the problem for the expansion coefficients tJrm 

Making the Fourier-Bessel transform 

F(s,  Z ,  5 )  = 

F ( p .  z, r)  = 

dp p J , ( s p ) F ( ~ ,  z .  r )  

dssJ,(w)F(s, z ,  7 )  

r 
Im 

where Jm(sp) is the Bessel function of the first kind, from (4) one obtains 

q m ( s ,  z. r )  = 0 T 4 0.  

The solution of the above problem can be obtained by the Riemann formula, so 

Here Jo(J(r - r')2 - ( z  - z')*) is the Riemann function for the equation (5 )  while the 
expansion coefficients j ,  are defined from (3). Making the inverse Fourier-Bessel 
transform, one can write the above results 

(7) 
This expression gives the algorithm to construct the coefficients for the expansion of the 
wavefunction. 

, I  
X J O ( S J ( T  - 502 - (z - z ~ )  jm(s, z , r 1. 

3. Wavefunction expansion for the source at rest 

Let the source be dimibuted on a circle with radius U .  Then the function j is 

where S ( x )  is the Dirac distribution. The expansion coefficients of the function j are 
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Substituting (8)  into (7) and using the property of the &function, one obtains 
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We denote the integral 

Jo 
The dependence of the integral I ,  on the variables p .  r , z  and the parameter a can be 
expressed as (Gradshteyn and Ryzhik 1969, equation 6.578) 

"-io 
where P:?lIz(cos 9) is the Legendre function of the first kind, 

1 

2ap 
- (t - ?')*) cos I9 = - (p2 + a2 + z2 

Hence the integral I, is non-zero if 

Remembering that 

we can write Z, as 

1 cosmit 

From (9) one can obtain 

where 

T = max(0. r - J(p + a)Z + z2 )  . 
Using the Chebyshev polynomials of the first kind T,(x) = CO! . 
wavefunction * I CO! ' x )  we we r the 

*='ceimv/'-""j T,(&@' + a 2  + z2 - ( r  - r')')) 
dr'fm(t') . (11) 

4 1 -  +(pz + a2 + zz - (r - +)2)2 

This relation describes the wavefunction @ for the arbitrary time dependence of fm(r'). 

cap , T 
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The expansion coefficients tlr, in the particular case of the &pulse source f ,(r)  = S(r)  
are 

2 T, ( k ( p 2 +  a2 + 22 - ‘2)) 
+m = - [ h(r - J F Z F 7 )  

1 - &(pz t a? + 22 - r2)2 

where 

0 x < o  
( 1  X Z O  

h ( x )  = 

is the Heaviside function. 
From (12) we have for the pulse duration 6 = 4- - ,/-. The 

pulse fronts are surfaces r2 = ( p  - a)’ + E’ and r2 = (p  4- a)’ + E* The 01 nomials 
T,(x) have m zeros, hence +m has m zeros for r c [,/-, ?*I. 

+ z2, one obtains for the steady-state If f ( r ‘ )  = exp (iwr‘/c) and r z J ( p  + 
process 

In the case J(r‘) = cos(o/c)r’ one can obtain 

(14) 
2 +,,, = -[cos(wr/c)@i’(p, z,a) + sin(wr/c)@E’(p, z , a ) ]  

cap 

where 

Note that the amplitude coefficients for m = 0 are solutions of the Helmholz equation 
(Bateman 1955). 

4. Expansion of the wavefunction for the soum distributed on a circle moving with a 
constant velocity v -= c 

The time-dependent source is distributed on a circle which starts its motion at the time 
r = 0 with constant velocity w along the axis E .  

where p = w/c. Using new variables 
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we have from (4) the equation for the coefficients &(p,  zg, rp) 
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with the initial conditions 

qm=o y < o .  (18) 

Separating the angular and radial variables and applying the Riemann method we obtain for 
the function $rm 

Due to the property of the &function one obtains 

where 
m 

I,,, = dssJ,(sp)J,(sa)JO(sJ(rg - ~2 - (zg - z ; ~ ) .  

The integral I ,  is non-zero in the spacetime domain 

(p  +a)' + < ( t p  - $)* < ( p  -a)' + z ;  . 
Using the relations 

1 & cos(mO+q) 
I - - -  m -  . 

pa 11 sin Og 

+ a2 + z* - (rg - rj)2)' 

we have the solution of the problem (17) and (18) 

where 

T = max(0, rp - q"p + + zj) . 
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According to the definition of the polynomials T,,,,(x) we can write the following for the 
wavefunction I//: 
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where r2 - zz = 7; - z i  , hence the expressions (12) for the source being at rest and (21) 
for the moving source are equivalent. 

Let fm(7', 0) = eiwr''c and rp > ,/W. From (21) one can obtain for the 
expansion coefficients $,,, (the steady-state process) 

Being expressed via the variables 7; z , this solution represents a steady-state process, which 
differs from the result for the source at rest (14). 

5. Expansion of the wavefunction for the source distributed on a circle moving with 
the velocity of Light 

This is a special case of the problem. The source starts at the moment of time r = 0 and 
moves with the velocity of light c along the axis z .  In this case the expansion coefficients 
for the function j are 
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and after separation of the radial variable we have the following problem from (4): 

@,,,(s, z ,  r )  = 0 
The solution of this problem is 

r c 0. 

Hence one obtains 

The internal integral I ,  is non-zero when 7' is in the range 
7' - Z 2  - r2  - z2  - ( p  - a)2 

e r' c 
2(r - z )  2(7 - Z )  

Then 
1 cos m e  

pa n sin d 
I m -  

where 
1 

Zap 
COSB = - (p2 +a2  + z2 - rz  + 2(7 - z)r') 

1 
s ine  = I - 4a2pZ (p2 + a2 + zz - r2 + 2(7 - z)rt)'. 

We have for the expansion coefficients of the wavefunction 

where 

Writing the expression for pm with the help of the Chebyshev polynomials one can obtain 

for the expansion of the wavefunction (3). The above expression gives the represantation 
JI for the arbitrary time dependence of the source. 
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The result (30) in the particular case m = 1 is 

2 l r ~ - ~ ~ - ( ~ - ~ ) ~ j / 2 ( r - ~ )  '(0' + a2 + z2 - r2 t 2(5 - ZIT') 

,/I- + (02  t a2 + 22 - 52 + 2(5 - z)r!)' 
@,=-I dt'fi(S', 5') ZUP 

wa T 

When the function f, =constant, one obtains h=l cpa(r - z) 

In this case for r2 > z 2  + (p  + a)2 we have the following expansion 

* ,/X"E$- zz t ( p  - < 72 -= 22 t ( p  + a)* 

0 r2 > Z ' t  ( p  f a ) ' .  

Here 

Using the orthogonal property of the Chebyshev polynomials one obtains @,,, = 0 for m # 0 
when 7' > z2 + (p  + a)' and $,,, f 0 if 5' < i2 + ( p  +a)'. Hence the pulse duration 
is 6 ( p ,  z, r )  = h p / ( r  - z) for every expansion coefficient 16;. , m # 0. The expressions 
(p  - a)* + z' + 2(5 - z)r' = 0 , (p  + a)' + z2 + 2(5 - z ) ~ '  = 0 describe the front surfaces 
of q,,, in the case m # 0 and f,,,(s', r') = constant. 

We have the important case when a cosinusoidal wave is turned on in the circle: 
fm(s', 5') = cos (cor'/.). Making the substitution (32) and using equation 7.355 of 
Gradshteyn and Ryzhik (19691, we get for the expansion coefficient p, (the case of the 
steady-state mode) 

!h" = (-1Y- 
c(5 - i) 

2n 

m = 2n 

(33) 

m = 2n t 1 
Jh*1 (y-) 

where n is an integer. Note that the expressions (12) can be obtained from (30) for the 
&pulse source f, = 8 ( r ) .  

6. Discussion 

The alternative wavefunction representation is determinated by the structure of the source. 
Let us obtain the expansion of the wavefunction in terms of spherical harmonics and modes 
in cylindrical coordinates for the axisymmebic circumferential source being at rest. The 
corresponding wave equation in spherical coordinates r, V >  rp is 

;iz i a  ( r z s )  +=A 1 
( s i n V g )  - a2@ = - - j  4 ~ .  

C 

where 
1 
r2 j = -6(r - ro)S(O - Oo)f(r) j = 0 r i 0. 
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Here ro, fi0 are the source coordinates and a = ro sin 00 is the radius of the circumferential 
source. The initial condition is 

* = O  r C O .  

Using the expansions 

where P,(cos fi) is the Legendre polynomial, one can obtain the problem for the expansion 
coefficients 6 

The expansion coefficients €or the source are 

1 
jn  = (n+i)Pn(cosfio);T6(r -ro)f(r). 

The solution of the above problem can be found with the help of the Riemann formula 
(Manankova 1972). For the wavefunction * we have 

Here 

r - r f r o  i f r s r o  

r + r - r o  i f r x r o .  

A simpler result can be obtained for the representation of the wavefunction as a series 
of modes in cylindrical coordinates. Using (1 I), one obtains 

@ = *o = cap s, 
where 

2 r-./(p-a)zt(z-zo)~ 1 
dr’f (5’) 

J1 - h ( p 2  + a2 + (z - z0)z - (r - 5 ~ 2  

T = max (0-, r - J(p + a)z + ( z  - zo)2) 

and zo = acot80. is a pulse confined by the wavehnt r2 = 
( p  - a)2 + ( z  - zo)*. Note that every expansion coefficient of spherical harmonics (33) 
is a pulse confined by the spherical fronts r - r + ro = 0, r > ro or r + r - ro = 0, r c ro 
and only the sum of the terms gives us the correct result. 

The wavefunction 



6252 

7. Conclusion 

The above solutions of the scalar wave equation can be applied to electromagnetic waves. 
For example, we obtain from Maxwell’s equations 

V V Borisov and I I Simonenko 

az 4a 
VzBi - -Bj = -(rotj)i. a ~2 C 

Here E, and are the Cartesian components of the electric field strength and the magnetic 
induction vectors, and p and j are the elechic charge and current densities. Gaussian units 
are used. We have the wave equation (I), where I) is E; or Bi and j i  is Cartesian component 
of vectors (E + cgradp) or rotj.  

Electromagnetic waves can also be described in terms of one-component vector ll = 
e,n for the special case j = e, jz. Maxwell’s equations can be satisfied if 

a2n a2n 1 a2n 
p a z a p  - a 9  a s 2  

E E a2n E ,  = - 
apaz 9- 

Here ll is the Whittaker-Bromwich scalar potential (Nisbet 1955). For anjar the 
inhomogeneous equation (I), where j is the z-component of current density j z .  is obtained. 

Thus, the present results permit us, in principle, to describe the electromagnetic wave 
produced by different source pulses, up to the electron moving along a helicoidal line 
from the fixed moment of time, in terms of the transient modes in cylindric coordinates. 
Note that case U = c can be used as a simplified model for the description of the 
electromagnetic fields produced by a pulse of hard radiation (Kanas and Latter 1965, 
Longmire 1978). In particular, the above electromagnetics model is important in connection 
with the relatively new problem of formation of the localized electromagnetic pulses which 
are akin to Brittingham’s focus wave modes. 
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